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STRESS FUNCTIONS FOR COSSERAT ELASTICITY

S. C. CowiN

Department of Mechanical Engineering, Tulane University

Abstract—In this paper a complete solution is obtained to the displacement equations of equilibrium for linear
infinitesimal isotropic Cosserat elasticity. This solution is in terms of stress functions analogous to the Papkovitch
functions of classical elasticity and those found by Mindlin and Tiersten for couple stress elasticity. Previous
complete solutions to these equations given by Mindlin and by Neuber contain three more scalar potentials than
are employed in the present solution.

1. INTRODUCTION

THE equations for the theory of the linear infinitesimal isotropic elastic Cosserat continuum
were presented by Aero and Kuvshinskii [1, 2], Mindlin [3] and Neuber [4]. The Cosserat
theory may be considered as a special case of the more general theories of Green and Rivlin
[5], Mindlin [6] and Toupin [7]. The linear theory of micropolar elasticity recently proposed
by Eringen [8] coincides with the Cosserat theory. The special case of Cosserat elasticity
known as couple stress elasticity was presented in the papers of Aero and Kuvshinskii [9],
Grioli [10], Mindlin [11] and Mindlin and Tiersten [12].

In the next section the equations for the Cosserat theory are reviewed. In the following
and final section a complete solution is obtained for the displacement equations of equili-
brium for a linear infinitesimal isotropic Cosserat elasticity. This solution is very similar in
form to that obtained by Mindlin and Tiersten [12] for the couple stress theory. The previous
complete solutions given by Mindlin [3] and by Neuber [4] contain three more scalar
potentials than are employed here. The method of proof employed here differs only in
algebraic detail from that employed by Mindlin [3, 13].

Notation
Cartesian tensor notation will be employed. The symmetric part 7, of 7;; and the skew
symmetric part oy of ¢;; are given by the formulas
Tap = Hry+ 150, Oy = 3oy~ 050, (1.1)

The following rule is laid down for associating axial tensors with absolute three dimensional
tensors of rank two and three: Given a skew symmetric second rank tensor Y and a third

rank tensor skew symmetric in its last two indices «,,;;, the axial vector denoted by ¥,
and the axial second rank tensor denoted by %, are computed by the formulas

A

Y = %ex‘jkd/jk’ Kmi = %eijkxmjk* (1.2)
The inversions of equations (1.1) are given by

Vi = el Kmpig = €ijpRmi- (1.3)
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An axial or pseudo scalar will be denoted by a symbol with a circumflex or hat on top and
no indices, for example, 8 or h.

Generally the notation employed here follows that of Mindlin [3, 6] and Mindlin and
Tiersten [12]. A table giving the notations of Mindlin [3], Aero and Kuvshinskii [1, 2],
Neuber [4] and Eringen [8] is included as an appendix.

2. THE COSSERAT THEORY

Kinematics

In Cosserat elasticity, in addition to the displacement vector u; of classical elasticity, an
axial vector ¥, is introduced to represent the total rotation of the rigid Cosserat triad during
deformation. The vector fields », and ¢, are the basic kinematical quantities in the Cosserat
theory. The usual strain tensor ¢; and the usual rotation tensor w;; are defined by

&y T Ug j), Wy = Uy j. (2.1)

The traditional average rotation tensor w;; is a measure of the rotation of principal axes of
strain during deformation ; the associated axial vector is given by

@; = %eijkuj,k’ @ = —3Vxu. (2.2)
The relative rotation between the triad and the principal axes of strain is then defined as y;;
Vij = 0¥y = — Vi (2.3)
which is also represented by an axial vector
fe= — O~ T =3Vxu—{. (2.4)
The gradient of the total rotation is denoted by £,
Rim = Wi OF  Kije = Ve (2.5)

Note from (2.4) and (2.5) that
K = ?m,m » (26)

mm

hence when the relative rotation 9,, vanishes everywhere as it does in the couple stress theory,
Rm vanishes also.

Equilibrium equations

If the symmetric stress tensor is denoted by t;;, the skew symmetric stress tensor by ¢;;,and
the couple stress tensor by fi;;, then the equations of equilibrium (cf. Mindlin (6], Sections 3
and 4) are given by

Tt o+ fi=0 2.7

and
where f; is the body force per unit volume and ¢, is the body couple per unit volume. The
traction boundary conditions are

L = ny+moy, m; = N, (29)
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where ¢; is the surface force per unit area, m; is the surface couple per unit area, and n, is the
unit normal to the boundary.

Constitutive equations
The constitutive equations for linear infinitesimal isotropic Cosserat elasticity are

Ty = Al +2pe; 6 = 21y, (2.10)

jo
PO JEA . s
iy = 50+ 2K+ 20k j; (2.11)

where A and p are the Lamé coefficients of classical elasticity and #, #’ are moduli employed
in the couple stress theory (cf. equation (3.23) of Mindlin and Tiersten [12]). The coefficients
7 and a appear in neither classical elasticity nor the couple stress theory; 7 is a modulus of
local rotational stiffness and o is a modulus of the volume flux of local rotation. 1t is required
that 34+ 2y, u, 1, 1, 30+ 4y +4n’ and the quantity 1—(y'/5)? all be positive.

The coefficients ¢ and 7 have the same dimensions and are both positive, hence the

number N defined by
NE/(T), 0<N<I, (2.12)
u+r

is dimensionless. N has the value 0 for classical elasticity and the value 1 for the couple
stress theory. N is called the coupling number.

Of the six coefficients 4, y, 7, o, # and #’ introduced in (2.10) and (2.11), 4, 4 and 7 have
the dimensions of stress and «, # and %’ have the dimensions of length squared times stress,
hence any ratio of a, # or ' to 4, u or T will be a material parameter of dimension length
squared. In the couple stress theory the length [,

n
l= |- 2.
\/u 2.13)

is used. In Cosserat elasticity the material lengths

_ / _ oa+4n+4n (I—NZ)
L=1 12=\/(_4T_), zas\/[ e (2.14)

are also employed. The lengths /;, [, and I; reduce to /,0 and 0, respectively, for the couple
stress theory.

Displacement equations of equilibrium
The displacement equations of equilibrium for the Cosserat theory are obtained by
substituting the constitutive equations (2.10) and (2.11) into the equations of equilibrium
(2.7), (2.8) and subsequently employing the definitions (2.1) and (2.5); thus
(A+ g i + pt; ji— 21€,3595 j+ f; = 0, (2.15)
(041 Wi+ 4D jo+ 419+ & = 0. (2.16)
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These two equations may be rewritten in vector notation as
(A+20)VV u—pV xVxu—2tV xy+1 = 0, (2.17)
(x+4n+47)WV —dpV x V x f+419+8 = 0, (2.18)
where the vector identity
Vv = VV.v—VxVxvy (2.19)

has been employed. The system of 3 vector equations consisting of (2.17), (2.18) and (2.4)
involve the three vector unknowns u, ¥ and .

3. DISPLACEMENT POTENTIALS

For a regular region of space a complete solution to the displacement equations of
equilibrium (2.17) and (2.18) is given by

(1-N?) 1 2 "
= h—PVV.h—}* V2VV h—- Ly
N* 4(1~»)V‘ t-3zV h+h0J (3.1)
5 (1-N?) (lvN)i2 1
= Vh- 2V x Vh = Y X
Y e PV XV = V-8, (3.2)

where the potentials h, h, and /i satisfy the differential equations

2 N2
y(l—%vZ)VZh: —[1—12(] N

2 2
uthozr.[l --Nﬁ}zzv] L vxe-U VN )712[1~2(1—x)( )zzw]v £
b2 N (3.4)
(1— BV = ~—£~v (3.5)

)VZ] f»%V x &, (3.3)

where r denotes a position vector and where the notation (2.12), (2.13) and (2.14) for the
material parameters has been employed. When N is set equal to one, equations (3.1}, (3.3)
and (3.4) reduce to equations (11.17), (11.18) and {11.19) of Mindlin and Tiersten [12] and
represent a complete solution of the displacement equations of equilibrium for the couple
stress theory. This result indicates that the solutions to the differential equations governing
static Cosserat elasticity are no more difficult and only slightly more complicated than
those governing the static couple stress elasticity. (The boundary conditions for the Cosserat
theory are less complicated, however.) In the case when N is unity and /, = 0 it may be
shown that both § and k vanish identically. On the other hand, the complete solution for the
static form of the Navier equations of classical elasticity is obtained from (3.1), (3.3) and (3.4)
if the body couple € and the material length parameter ! is set equal to zero. In this latter
case equations (3.1), (3.3) and (3.4) reduce to equations (10), (11) and (12) of Mindlin [13].
Thus, the complete solution for the displacement fields in static Cosserat elasticity given
above contains the complete solutions for both classical elasticity and the couple stress
theory as special cases and it involves only one more scalar potential, namely 4, than
employed in classical elasticity or the couple stress theory.
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Mindlin [3] has given a solution of the displacement equations (2.17) and (2.18) involving
one more vector potential than employed above. Mindlin’s potentials B, K, K, and B, are
related to h, h, and h by

h = (1-2V?)B+V xK,

41-v)

he = (1= BV?)By—(1— BV V xK+ — , BV A, (3.6)

h=1V.K—3iVir . K+K,).

Neuber [4] has also given a solution of the displacement equilibrium equations in the case of
vanishing body forces and vanishing body couple ; Neuber’s solution also employs one more
vector potential than employed above. Neuber’s potentials ®, ¥, ®, and N’ are related to
h, iy, h in the case of vanishing body forces and vanishing body couples by

_Al—-v) 1
h= 5 (IH—Z#‘P,
1—
hy = ul ‘Q(CI)O—-V‘V.(D), (3.7}
2u
~ N’
h - _“2;,

where v is Poisson’s ratio. The complete solution given by equations (3.1) through (3.5) has
an advantage over the solutions given by Mindlin and Neuber in that it involves only five
scalar potentials while the other solutions involve eight. Also, the present solution is more
easily related to similar complete solutions for the couple stress theory and for classical
elasticity.

The completeness of the solution stated in the opening paragraph of this section will now
be proved. The method of proof given here follows Mindlin [3, 13]. Let the Helmholtz
decomposition of the fields u and ¥ be represented by

u=Vep+Vxk, V.k=0, (3.8)
T=V0+Vxq, V.q=0, (3.9)

where ¢ and represent a scalar potential and an axial or pseudoscalar potential, respecti-
vely, and q and k represent a vector potential and an axial vector potential, respectively.
Substituting (3.8) and (3.9) into (2.17) and (2.18) and employing (2.4), one finds that

V2[(A+ 20V +uV xk +2tq]+f = 0, (3.10)
2t(1 — BYA)VO +21(1 — BVHV x q—nV*k +4& = 0, (3.11)

where the notation introduced by (2.12), (2.13) and (2.14) has been employed. Applying the
operator (1—13V?) to equation (3.10), taking the curl of (3.11), and subsequently equating
these two expressions for the quantity 27(1 — 2V?)V?q, one obtains the expression

UV — BV +(1— BVAV xK] = — (1 - BVHf—3V x§, (3.12)
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where the notation

i+2pm2{}mv)
' 7l T o1=2v (3.13)

k

fil

has been introduced. Using the customary notation of potential theory, the quantity hj, is
defined by

1 .
4nlPh, = f —e K1~ BVAV +(1 - BVAV x kg ¥ (3.14)
Vit

where the subscript P denotes a function of a field point, the subscript Q denotes a function of
the source point and r, denotes the distance between P and Q. Dropping the subscript P
from h’ it follows from (3.14) that

(1-BVIHh = k(1 —-BV3V¢ +(1 - BV xk, (3.15)
and from (3.12) and (3.15)
w1 —-BVAW2h = —(1~BVHF—1V xec. (3.16)
Now, taking divergence of (3.10) and employing (3.9), one obtains the equation
(A+2u)V4+V . £=0; (3.17)

similarly, the divergence of (3.15) yields
(1—-BVHV W = k(1 ~BVHV34. {3.18)
From (3.18) using (3.17) and (3.13) it follows that

(1-BVHv. h'—»%v £ = kVigp. (3.19)
Defining
2ke* =r.(1—-1BVHN (3.20)
it follows from (3.16) and (3.19) that
2kuV2p* = 2kuV2p+ 2BV f—r. (1 - BVH—ir. Vx& (3.21)
Now, define
ho = 2k(¢— %), (3.22)
then from (3.21)
uVZihy = 1. (1—BV3f+ir VxE-28V . (3.23)
and from (3.20) and (3.22)
2k¢ = r.(1—-BEVHW +hj. (3.24)
Keeping this result in mind a new calculation is begun by defining the quantity g by
g =h—BVV hW—k(1-1EV)Ve (3.25)

which, from (3.18) is divergence free,
V.g=20 {3.26)
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Therefore, there exists an axial vector function Kk’ such that

g = Vxk. (327
Applying the operator (1 —2V?) to (3.25) it follows from (3.27), (3.15) and (3.18) that
(1—BVYV x k' = (1 - BV3)V xk. (3.28)
If i is defined as
b = Vxk-Vxk (3.29)
then from (3.28) and (3.29) one finds that
(1-BVHh" =0, V.h"=0. (3.30)
From (3.25), (3.27) and {3.29)
Vxk =hW+h"—BVV. W —k(1-BV*V¢, (3.31)
hence introducing the notation
h = h'+h" (3.32)
it follows from (3.24) and (3.30), that
2k¢p = 1. (1-BVHh+h (3.33)
and from (3.31), (3.32), (3.33) and (3.30) that
Vxk = h—BVV_h—i(1-BVA)V[r.(1 - BVih+h). (3.34)
Placing (3.33) and (3.34) into (3.8) and using (3.13) the displacement u is given by
u=h-0LVV, h_%[zu 1_ V)—1§V2]V[h()+r .(1=1V3h). (3.35)

Expansion of the last term in this expression for u using (3.16), {3.23) and the notation (2.14)
will give the result (3.1) if h is given by

14
hy = h;,+i-4(1 —WW . f. (3.36)

The differential equation (3.4) follows upon substituting (3.36) into (3.23) and employing
the notation (2.14). The differential equation (3.3) follows from (3.16) when (3.30), (3.32) and
(2.14) are employed. '

The problem of deriving the expression (3.2) for ¥ will now be considered. Taking the
curl of (3.10) it follows from (3.8), and the vector identity (2.19) that

1
V3V xq = Z[yV“f(«—V x ). (3.37)

Substituting the expression (3.37) into (3.11) and solving the resulting equation for V x ¢ one
finds that

. 1 1
v _ _{1_py2 Hpoag b
xq (1=BVVO+2-5V k S BV xf--¢ (3.38)
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Taking the curl of (3.34) and subsequently employing the vector identity (2.19), the result
Vk = ~Vxh (3.39)

follows, hence from (3.9), (3.38) and (3.39)
5= Bvvh—Epyry h--1~12V X f~ié (3.40)
2t ! 20 4t '

To obtain the differential equation governing 8 take the divergence of (3.11) and employ
(3.8),, thus

A 1
(1-BVHVIH = MZ;V & (3.41)

Defining
h = 12v?, (3.42)

the expression (3.2) for ¥ follows from (3.40) and (3.42) when the notational changes (2.14)
have been accomplished. The differential equation (3.5) follows from (3.41) and (3.42). This
completes the proof,

There are several alternative methods of proving the validity and completeness of the
representation given by (3.1) through (3.5). As an example of alternate method consider the
following four steps: The first step consists of uncoupling the system of equations (2.17)
and (2.18). Eliminating { from the system of equations (2.17) and (2.18) by employing (2.4),.
and subsequently performing a series of manipulations, a system of the two uncoupled
vector equations in u and ¥ are obtained,

(1 =BV [(A+2wVV .u+1]— u(1 - BVV x V xu+4iVx ¢ = 0, (3.43)
Y SR I
leV.y—IIVxny—-y-i—;»fo—-«c=0. (3.44)

2T 4t

The second step consists of finding complete solutions to the uncoupled set of equations
{3.43) and (3.44). Equation (3.43) is similar to an equation whose complete solution was
obtained by Mindlin [6, Section 13]. A complete solution of (3.44) is easy to find and can be
obtained, for example, by appropriately modifying the arguments of Duhem’s proof of
Clebsch’s completeness theorem as given by Sternberg [14, Section 2]. These two complete
solutions involve two vector and two scalar potentials. The third step consists of substituting
the complete solutions of (3.43) and (3.44) back into the original coupled set of differential
equations (2.17) and (2.18). The equations generated in this process will show that the two
vector potentials generated in step two are related and one may be eliminated. The fourth
and final step consists of using the relationship between the two vector potentials obtained
in step three to reduce the results of step two. The resulting equations will again prove the
validity and completeness of the representation expressed by (3.1) through (3.5).
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APPENDIX

TABLE OF NOTATIONS

Symbol in Aero and
Name the present Mindlin {3] Kuvshinskii Neuber [4] Eringen [8]
text [1,2]

Dynamic variables

Symmetric stress tensor Tij Tij G ij) Lijy Lij)
Skew-symmetric stress tensor T 0y —Oij) Lijy Lij
Couple stress tensor f; % € fmattimn Ty Imy; m;;
Body force per unit volume fi fi of; P, of;
Body couple per unit volume I8 €D pm; 4 pl;

Kinematic variables

Displacement vector u; y u; Vi Y
Strain tensor & & €ij dgj) eij
Average rotation vector @, Yy —w; 7 Cimnlln — O =T
Total rotation vector v Y ey Q, ; &
Relative roFatlon vector % te kYUK w;— =3 Cimnmn ri~¢;
Total rotation gradient tensor Ky 3 €imnKimn i ;i b

Material coefficients

Lamé modulus p p A ce A
1-2v

Lamé shear modulus I u u G p+3K

Rotation modulus T B -y Ga 3K

A rotation gradient modulus o 20, 2n 4G1ic

A rotation gradient modulus n ¥, 30 GP? I

A rotation gradient modulus n oy — 3oy —day 1 GP*b 18
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AGcTpakT---B paboTe nony4aeTcs MOHOE PEleHHE YPaBHEHHIE pABHOBECHS! B ITEPEMELLEHHAX /1A IHHERHOH
MHPUHMTHIMMANBHOW w3oTponHOH ympyroctn Koccepa. D10 peienue naercs B BbipaXKenusiX $yHxuuni
HANPSOKEHUH, aHAJTOTYHBIM QyHKUMaAM [lankoBuya IS KITACCHYECKOM YIIPYTOCTH | pelleHusM Munauna
u TUpCTeHA ANIA TCOPUH YIIPYTOCTH C yYeTOM MOMEHTHBIX HANPIKCHU# .

TMpeasiayliMe TTIONHBIE PELISHUS ITUX YPABHEHUH, nonyveunsle MunanuuoMm u Heitbepom, 3aknwovator
Tpu Goslee CKaNAPHBIX MOTEHUMANOB, [0 CPABHEHHIO C MCMOJIB30BAHHBIM B HACTOSIILEM DEUIEHHH.



